Klassinen liike-energia eli ei-relativistinen liike-energia

\[E_k = \frac{1}{2} m v^2 \]

- käytetään, kun nopeus \(v < 0,1 \) c (nopeus alle 10 % valon nopeudesta)
- käytetään, kun \(\frac{E_k}{E_0} < 4 \% \) eli liike-energian osuus lepoenergiasta on alle 4 %
- muutoin nopeuden ja liike-energian virhe \(\geq 1 \% \)

Ratkaistaan klassisesta liike-energian suureyhtälöstä hiukkasen nopeus \(v \):

\[v = \sqrt{\frac{2E_k}{m}} \]

Suhteellisuusteorian liike-energia eli relativistinen liike-energia

\[E_k = mc^2 - m_0 c^2 \]

\[m = \frac{m_0}{\sqrt{1 - \left(\frac{v}{c}\right)^2}} \] (MAOL s. 135)

\[E_k = \frac{m_0 c^2}{\sqrt{1 - \left(\frac{v}{c}\right)^2}} - m_0 c^2 \]

\(c = \) valon nopeus tyhjiössä, \(c = 2,99792458 \times 10^8 \) m/s, MAOL s. 70

- käytetään, kun nopeus \(v > 0,1 \) c (nopeus yli 10 % valon nopeudesta)
- käytetään, kun \(\frac{E_k}{E_0} > 4 \% \) eli liike-energian osuus lepoenergiasta on yli 4 %
 - esim. varatun hiukkasen kiihdytysjännitteen \(U \) mukainen liike-energia \(E_k = W = qU \) on yli 4 % hiukkasen lepoenergiasta \(E_0 = m_0 c^2 \)
- muutoin nopeuden ja liike-energian virhe \(\geq 1 \% \)

- **Jos esim. elektronin kiihdytysjännite yli 20 kV, niin klassinen tarkastelu antaa nopeudelle ja liike-energialle noin yli 2 %: virheen. Tällöin elektronilla liike- ja lepoenergian suhde \(E_k/E_0 = 20\text{keV}/511 \) keV \(\geq 4\% \), joten laskuissa on käytettävä suhteellisuusteoreettista tarkastelua. (vrt. Esim.3).**

Huom! klassinen liike-energian suureyhtälö \(E_k = \frac{1}{2} m v^2 \) seuraa relativistisesta liike-energian suureyhtälöstä \(E_k = mc^2 - m_0 c^2 \) likimääristyksenä, kun hiukkasen nopeus \(v < 0,1 c \)

(ks. http://www.kotiposti.net/ajnieminen/sutek.pdf).

Ratkaistaan klassisesta liike-energian suureyhtälöstä hiukkasen nopeus \(v \):

\[E_k = \frac{m_0 c^2}{\sqrt{1 - \left(\frac{v}{c}\right)^2}} - m_0 c^2 \]

\[E_k = \left(\frac{1}{\sqrt{1 - \left(\frac{v}{c}\right)^2}} - 1\right) m_0 c^2 \]
\[
\frac{E_k}{m_0c^2} = \frac{1}{\sqrt{1-(\frac{v}{c})^2}} - 1
\]
\[
\frac{1}{\sqrt{1-(\frac{v}{c})^2}} = \frac{E_k}{m_0c^2} + 1 \quad \parallel \quad 0^2 \quad \frac{1}{1-(\frac{v}{c})^2} = \left(\frac{E_k}{m_0c^2} + 1\right)^2
\]
\[
\frac{1}{1-(\frac{v}{c})^2} = \left(\frac{E_k+m_0c^2}{m_0c^2}\right)^2 \quad \parallel \quad 0^{-1} \quad 1 - \frac{v^2}{c^2} = \left(\frac{m_0c^2}{E_k+m_0c^2}\right)^2
\]
\[
v^2 = 1 - \left(\frac{E_k+m_0c^2}{m_0c^2}\right)^2
\]
\[
v^2 = c^2 \left[1 - \left(\frac{E_k+m_0c^2}{m_0c^2}\right)^2\right] \quad \parallel \quad \sqrt{\cdot} \quad (v > 0)
\]
\[
v = c \sqrt{1 - \left(\frac{m_0c^2}{E_k+m_0c^2}\right)^2} \quad (*)
\]

Esim. 1. Hiukkasen lepoenergia on \(E_0 = m_0c^2\) ja Liike-energia \(E_k = 0,04E_0\). Laske hiukkasen nopeus a) klassisesti, b) suhteellisuusteoreettisesti, c) klassisesti lasketun nopeuden virheprosentti.

RATKAISU

a) Nopeus klassisesti:
\[
E_k = \frac{1}{2}mv^2, \quad m = m_0
\]
\[
v = \sqrt{\frac{2E_k}{m}} = \sqrt{\frac{2 \cdot 0,04E_0}{m}} = \sqrt{\frac{2 \cdot 0,04 \cdot m_0c^2}{m_0}} = \sqrt{0,08c^2} \approx 0,2828427125c
\]
\[
v = 0,2828427125 \cdot 2,99792458 \cdot 10^8 \frac{m}{s} \approx 8,4794112 \cdot 10^7 \frac{m}{s}
\]
\[
v_{klas} \approx 0,2828c \approx 8,4794 \cdot 10^7 \frac{m}{s}.
\]

b) Nopeus suhteellisuusteoreettisesti:
\[
E_k = \frac{m_0c^2}{\sqrt{1-(\frac{v}{c})^2}} - m_0c^2 \quad v = c \sqrt{1 - \left(\frac{m_0c^2}{E_k+m_0c^2}\right)^2} \quad (*)
\]
\[
v = c \sqrt{1 - \left(\frac{m_0c^2}{0,04m_0c^2+m_0c^2}\right)^2} = c \sqrt{1 - \left(\frac{m_0c^2}{1,04m_0c^2}\right)^2} = c \sqrt{1 - \left(\frac{1}{1,04}\right)^2}
\]
\[
v \approx 0,2746703242c = 0,2746703242 \cdot 2,99792458 \cdot 10^8 \frac{m}{s}
\]
\[
v \approx 8,234409162 \cdot 10^7 \frac{m}{s} \quad v_{suht} \approx 0,2747c \approx 8,2344 \cdot 10^7 \frac{m}{s}.
\]
c) $v_{\text{klas}} \approx 0,2828c \approx 8,4794 \cdot 10^7 \frac{m}{s}$, $v_{\text{suht}} \approx 0,2747c \approx 8,2344 \cdot 10^7 \frac{m}{s}$.

Klassisesti lasketun nopeuden virheprosentti:

$$\frac{v_{\text{klas}} - v_{\text{suht}}}{v_{\text{suht}}} = \frac{0,2828c - 0,2747c}{0,2747c} = 0,029 \ldots \approx 3 \%$$

Esim. 2. Hiukkasen nopeus on $v = 0,1c$. Laske hiukkasen liike-a) klassisesti, b) suhteellisuusteoreettisesti, c) klassisesti lasketun liike-energian virheprosentti.

RATKAISU

a) Liike-energia klassisesti: $E_k = \frac{1}{2}mv^2$, $m = m_0$, $v = 0,1c$

$$E_k = \frac{1}{2}m_0 \cdot (0,1c)^2 = \frac{1}{2}m_0 \cdot 0,01c^2 = 0,005m_0c^2$$

b) Liike-energia suhteellisuusteoreettisesti: $E_k = \frac{m_0c^2}{\sqrt{1-(\frac{v}{c})^2}} - m_0c^2$

$$E_k = \frac{m_0c^2}{\sqrt{1-(0,1c)^2}} - m_0c^2 = \frac{m_0c^2}{\sqrt{1-(0,1)^2}} - m_0c^2$$

$$E_k = \frac{m_0c^2}{\sqrt{1-0,0001}} - m_0c^2 = 1,005037815m_0c^2 - m_0c^2$$

$$E_k = 0,005037815m_0c^2$$

c) $E_{k,\text{klas}} = 0,005m_0c^2$, $E_{k,\text{suht}} = 0,005037815m_0c^2$

Klassisesti lasketun nopeuden virheprosentti:

$$\frac{E_{k,\text{suht}} - E_{k,\text{klas}}}{E_{k,\text{suht}}} = \frac{0,005037815m_0c^2 - 0,005m_0c^2}{0,005037815m_0c^2}$$

$$= \frac{0,005037815 - 0,005}{0,005037815} = \frac{0,000037815}{0,005037815} = 0,00750623038 \ldots \approx 0,8 \% \approx 1 \%$$

Jos esim. elektronin kiihdytysjännite yli 20 kV, niin klassinen tarkastelu antaa nopeudelle ja liike-energialle noin yli 2 %: virheen. Tällöin elektronilla liike- ja lepoenergian suhde $E/L_0 = 20\text{kV}/511 \text{keV} \ge 4\%$, joten laskuissa on käytettävä suhteellisuusteoreettista tarkastelua.

Esim. 3. Elektronia kiihdytetään levosta 20 kV:n jännitteellä. a) Laske elektronin saavuttama loppunopeus klassisesti, b) Laske elektronin lepoenergia jouleina (J) ja elektronivolttteina (eV). c) Laske elektronin loppunopeus suhteellisuusteoreettisesti. d) Laske klassisesti lasketun nopeuden virheprosentti.

RATKAISU

a) Nopeus klassisesti: $E_k' = \frac{1}{2}mv^2$, $m = m_0 = m_e = 9,1093822 \cdot 10^{-31} \text{kg}$ (MAOL s. 70).
\[W = E_k = qU = e \cdot 20 \text{ kV} = 20 \text{keV}. \text{ Muutetaan eV jouleiksi J:} \]

\[1 \text{eV} = 1,602176565 \cdot 10^{-19} \text{ J} \text{ (MAOL s. 67,69).} \]

\[E_k = 20 \text{ keV} = 20000 \cdot 1,602176565 \cdot 10^{-19} \text{ CV} = 3,20435313 \cdot 10^{-15} \text{ J} \]

\[
\begin{align*}
v &= \sqrt{\frac{2E_k}{m}} = \sqrt{\frac{2 \cdot 3,20435313 \cdot 10^{-15}}{9,1093822 \cdot 10^{-31} \text{kg}}} = 8,387658135 \cdot 10^7 \frac{m}{s} \\
v &= \frac{8,387658135 \cdot 10^7 \frac{m}{s}}{2,99792458 \cdot 10^8 \frac{m}{s}} = 0,27978221597c \\
v &= 8,387658135 \cdot 10^7 \frac{m}{s} = 0,27978221597c \\
v_{klas} &\approx 0,2798c \approx 8,3877 \cdot 10^7 \frac{m}{s}.
\end{align*}
\]

b) Elektronin lepoenergia \(E_0 = m_0c^2 = m_e c^2 \)

\[
E_0 = 9,1093822 \cdot 10^{-31} \text{kg} \cdot \left(2,99792458 \cdot 10^8 \frac{m}{s}\right)^2
\]

\[
E_0 = 8,187104427 \cdot 10^{-14} \text{ J} = 8,187104427 \cdot 10^{-14} \text{ eV} = 510998,8878 \text{ eV}
\]

\[
E_0 = 8,19 \cdot 10^{-14} \text{ J} = 511 \text{ keV}.
\]

c) \[v = c \sqrt{1 - \left(\frac{m_0c^2}{E_k + m_0c^2}\right)^2} \] (*)

\[
\begin{align*}
v &= c \sqrt{1 - \left(\frac{511 \text{ keV}}{20 \text{ keV} + 511 \text{ keV}}\right)^2} = c \sqrt{1 - \left(\frac{511 \text{ keV}}{531 \text{ keV}}\right)^2} = 0,2718656487c \\
v &= 0,2718656487c = 0,2718656487 \cdot 2,99792458 \cdot 10^8 \frac{m}{s} \\
v &\approx 8,150327107 \cdot 10^7 \frac{m}{s} \\
v_{suht} &\approx 0,2719c \approx 8,1503 \cdot 10^7 \frac{m}{s}.
\end{align*}
\]

d) \[v_{klas} \approx 0,2798c \approx 8,3877 \cdot 10^7 \frac{m}{s}. \]

\[v_{suht} \approx 0,2719c \approx 8,1503 \cdot 10^7 \frac{m}{s}. \]

Klassisesti lasketun nopeuden virheprosentti:

\[
\frac{v_{klas} - v_{suht}}{v_{suht}} = \frac{0,2798c - 0,2719c}{0,2719c} = 0,029 \ldots \approx 3 \%.
\]

Linkkejä:

http://www.kotiposti.net/ajnieminen/su.pdf
http://www.kotiposti.net/ajnieminen/suka.pdf
http://www.kotiposti.net/ajnieminen/sutek.pdf
http://www.kotiposti.net/ajnieminen/sutek2.pdf
http://www.kotiposti.net/ajnieminen/ev.pdf